Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 358(6366): 1056-1059, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29074584

RESUMO

Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four ß propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3'-end processing.


Assuntos
Processamento de Terminações 3' de RNA , RNA Polimerase II/química , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Fatores de Poliadenilação e Clivagem de mRNA/química , Microscopia Crioeletrônica , Polinucleotídeo Adenililtransferase/metabolismo , Conformação Proteica , RNA Polimerase II/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Poliadenilação e Clivagem de mRNA/ultraestrutura
2.
Proc Natl Acad Sci U S A ; 113(18): 5006-11, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27091989

RESUMO

Aplysia cytoplasmic polyadenylation element binding (CPEB) protein, a translational regulator that recruits mRNAs and facilitates translation, has been shown to be a key component in the formation of long-term memory. Experimental data show that CPEB exists in at least a low-molecular weight coiled-coil oligomeric form and an amyloid fiber form involving the Q-rich domain (CPEB-Q). Using a coarse-grained energy landscape model, we predict the structures of the low-molecular weight oligomeric form and the dynamics of their transitions to the ß-form. Up to the decamer, the oligomeric structures are predicted to be coiled coils. Free energy profiles confirm that the coiled coil is the most stable form for dimers and trimers. The structural transition from α to ß is shown to be concentration dependent, with the transition barrier decreasing with increased concentration. We observe that a mechanical pulling force can facilitate the α-helix to ß-sheet (α-to-ß) transition by lowering the free energy barrier between the two forms. Interactome analysis of the CPEB protein suggests that its interactions with the cytoskeleton could provide the necessary mechanical force. We propose that, by exerting mechanical forces on CPEB oligomers, an active cytoskeleton can facilitate fiber formation. This mechanical catalysis makes possible a positive feedback loop that would help localize the formation of CPEB fibers to active synapse areas and mark those synapses for forming a long-term memory after the prion form is established. The functional role of the CPEB helical oligomers in this mechanism carries with it implications for targeting such species in neurodegenerative diseases.


Assuntos
Potenciação de Longa Duração , Mecanotransdução Celular , Memória de Longo Prazo , Modelos Químicos , Fatores de Transcrição/química , Fatores de Transcrição/ultraestrutura , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/ultraestrutura , Animais , Sítios de Ligação , Simulação por Computador , Dimerização , Módulo de Elasticidade , Transferência de Energia , Humanos , Modelos Moleculares , Modelos Neurológicos , Príons , Ligação Proteica , Conformação Proteica , Estresse Mecânico , Termodinâmica
3.
Nucleic Acids Res ; 32(11): 3364-75, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15215336

RESUMO

The Rna14-Rna15 complex is a core component of the cleavage factor IA RNA-processing complex from Saccharomyces cerevisiae. To understand the assembly and RNA-binding properties, we have isolated and characterized the Rna14-Rna15 complex using a combination of biochemical and biophysical methods. Analysis of the purified complex, using transmission electron microscopy, reveals that the two proteins assemble into a kinked rod-shaped structure and that these rods are able to further self-associate. Analytical ultracentrifugation reveals that Rna14 mediates this association and facilitates assembly of an A2B2 tetramer (M(r) 230 000), where relatively compact Rna14-Rna15 heterodimers are in rapid equilibrium with tetramers that have a more extended shape. The Rna14-Rna15 complex, unlike the individual components, binds to an RNA oligonucleotide derived from the 3'-untranslated region of the S.cerevisiae GAL7 gene. Based on these structural and thermodynamic data, we propose that CFIA assembly regulates RNA-binding activity.


Assuntos
RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Substâncias Macromoleculares , Modelos Biológicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Poliadenilação e Clivagem de mRNA/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...